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Abstract— This paper deals with the problem of robust trajectory tracking control, with a guaranteed Hoo

performance, for free-floating manipulator systems.

A new control strategy is developed based on the robot

mathematical model and a fuzzy adaptive control law. The dynamic model of the free-floating space manipulator
is described through the Dynamically Equivalent Manipulator approach. The fuzzy adaptive control law is based
on Takagi-Sugeno model, which is proposed to estimate the behavior of parametric uncertainties and spacecraft
non-modeled dynamics. A nonlinear Hoo controller is formulated in order to attenuate the effect of estimation
errors and external disturbances in the joint positions to be controlled. Simulation results are presented to show

the effectiveness of this new approach.
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1 Introduction

Free-floating space manipulators (SM) are sys-
tems which allows the spacecraft to move freely
in response to manipulator motions in order to
conserve fuel or electrical power. The difficulty
of recreating space conditions on Earth and the
need for accurate simulation and prediction of
the behavior of such systems make its dynamic
modeling important. An analytical method of
modeling free-floating space robots called Vir-
tual Manipulator(VM) was developed in (Vafa
and Dubowsky, 1990). The Virtual Manipulator
is an inertial fixed-base robot whose first joint
is a passive spherical one, representing the free-
floating nature of the space manipulator. How-
ever, in this approach, only kinematic equivalence
is considered. Gu and Xu proposed in (Gu and
Xu, 1993) an extended robot model composed of
a pseudo-arm representing the base motion result-
ing from six hiperthetic passive joints, and a real
robot arm. Based on the VM concept, Liang
et al. (Liang et al., 1996) mapped a SM to a
conventional fixed-base manipulator and showed
that both kinematical and dynamical properties
of the space manipulator system are preserved in
this mapping. This manipulator is called Dynam-
ically Equivalent Manipulator (DEM). Adaptive
control schemes were applied to a SM based on
the extended robot model and on the DEM con-
cepts in (Gu and Xu, 1993) and (Parlaktuna and
Ozkan, 2004), respectively. Both schemes require
the measurement of the orientation, velocity and
acceleration of the free-floating base as well as a
complete mathematical description of the whole
system.

Two approaches to control uncertain sys-

tem subject to external disturbances are usually
used in controller designs: adaptive control and
robust control. Adaptive controllers with pa-
rameters adaptation laws, estimate and compen-
sate the non-modeled dynamics of the system,
(Craig, 1988). On the other hand, the H., con-
trol approach has been widely used to guarantee
robustness when the system is subject to distur-
bances, (Chen et al., 1994).

The adaptive procedure is generally based on
the linear parametrization property and also de-
mands a precise knowledge of the model structure,
considering constant or slowly-varying unknown
parameters. However, non-modeled dynamics are
usually present and their effects also decrease
the performance of this procedure. Hence, in-
corporating an intelligent adaptive system to the
robust controller, one obtains in a unified ap-
proach the advantages of both strategies. Fuzzy
logic systems and neural network systems have
been successfully applied to universally approxi-
mate mathematical models of dynamic systems,
see, for instance, (Begovich et al., 2002; Cao
et al., 2000; Chang, 2005; Lian et al., 2002; Pur-
war et al., 2005; Shaoceng et al., 2000; Takagi and
Sugeno, 1985; Tseng and Chen, 2000).

In (Taveira et al., 2006), the authors pre-
sented a comparative study of three techniques
of nonlinear adaptive H, controllers applied to
free-floating space manipulators. In addition to
(Taveira et al., 2006), this work aims to apply a
T-S fuzzy scheme to approximate only paramet-
ric uncertainties and non-modeled dynamics, such
that the adaptive technique works as a comple-
ment of the nominal model. The nominal model
structure of the manipulator is described through
the DEM approach. Different from (Gu and



Xu, 1993) and (Parlaktuna and Ozkan, 2004), po-
sition, velocity and acceleration of the free-floating
base are not included in the control law, since
these variables are generally difficult to obtain.
This paper is organized as follows: the DEM
concept and problem formulation are presented in
Section 2; the solution for the nonlinear H,, con-
trol problem based on the robot mathematical and
T-S fuzzy models is presented in Section 3; and, fi-
nally, simulation results for a two-link free-floating
space manipulator are presented in Section 4.

2 Model Description and Problem
Formulation

2.1 Free-Floating Space Manipulator Mapped by
a Dynamically Equivalent Fized-Base Ma-
nipulator

Consider an n-link serial-chain rigid manipulator
mounted on a free-floating base and that no ex-
ternal forces and torques are applied on this sys-
tem. Consider also the Dynamically Equivalent
Manipulator (DEM) approach proposed in (Liang
et al., 1996). The DEM is an n + 1-link fixed-
base manipulator with its first joint being a pas-
sive spherical one and, whose model is both kine-
matically and dynamically equivalent to the SM
dynamics. The DEM concept not only allows us
to model a free-floating space manipulator sys-
tem with simple and well-understood methods but
also provides data to build a real physical system.
Then, a conventional manipulator system can be
used to experimentally study the dynamic perfor-
mance and task execution of a space manipulator
system, without having to resort to complicated
experimental set-ups to simulate the space envi-
ronment.

spherical
joint

SM

Figure 1: The space manipulator and its corre-
sponding DEM.

Figure 1 shows the representation and the pa-
rameter notation for both SM and DEM manipu-
lators. Let the SM parameters be identified by /,
the links of the manipulators are numbered from 2
to n+1; the Z-Y-Z euler angles (¢, 0, 1) represent
the orientation of the SM’s base and the angles of
the DEM’s first passive joint; J; is the joint con-
necting the (i — 1)-th link and i-th link; 6; is the

rotation of the i-th link around joint .J;; C; is the
center of mass of the i—th link; L; is the vector
connecting J;' and C;’; R; is the vector connecting
C;' and J;,1'; l.; is the vector connecting .J; and
C;; and W; is the vector connecting J; and J;41.

Locating the passive spherical joint at the cen-
ter of mass of the SM and considering that the
manipulator operates in the same environment as
does the SM, i.e., in the absence of gravity, the
kinematic and dynamical parameters of the DEM
can be found from the SM parameters as (Liang
et al., 1996)
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where M, is the total mass of the SM. Observe
that the mass of the passive joint, mi, is not de-
fined by the equivalence properties.

Since the gravitational forces do not act upon
the DEM system and that no flexible components
are considered, from Lagrange theory, the dy-
namic equations of the DEM are given by

M(q)g + h(g,q) =, (2)

where ¢ = [ 0 Y 0 Oni1 |7 are
the generalized coordinates, M(q) € Rn3xn+3
is the symmetric positive definite inertia ma-
trix, h(q,4) € R"" is the vector of the
Coriolis and centrifugal forces, and 7 =
[0 0 0 m Tnt1 |7 is the torque vector
acting upon the joints of the DEM.

2.2  Problem Formulation

As we are dealing with a free-floating space manip-
ulator, it is considered that only the active joints
of the DEM are controlled, with the passive spher-
ical joint not locked. In this case, the passive joint
dynamics intervenes with the control of the ma-
nipulator active joints.

Let ¢ be partitioned as ¢ = | q{f qr
where the indexes b and m represent the pas-
sive spherical joint (base) and the active joints
(manipulator), respectively. Let h(q,q) be writ-
ten as h(q,q) = [ hf K2 |7 = C(q,4)q. Define
§ =6 oL |7 as a vector representing the sum
of parametric uncertainties of the system and a
finite energy exogenous disturbance. (2) can be
rewritten as

b
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where Mbb(QM) S R3X3a Mbm(Qm) S R3><TL’
Mmb(Qm) S RnxS, Mmm(Qm) S Rnxn’
Cbb(qma Q) € R3x37 Cbm (Qm, (J) € RBX”a
Cont(gm+4) € R™3, Crun(Gms gm) € R™™ and
Tm € R™.

The controller is designed for the SM consid-
ering the DEM model.

Let ¢, and ¢¢, € R™ be the desired reference
trajectory and the corresponding velocity for the
controlled joints, respectively. The state tracking
error is defined as

. -d ~
~, dm — 4y, dm
€T = = ~ . 4

" |: qm — ng :| |: dm :| ( )
The variables ¢, ¢¢,, and G? , the desired accele-
ration, are assumed to be within the physical and
kinematics limits of the control system and there
exists no reference trajectory for the base.

Consider the following state transformation,
(Chen et al., 1994)

O R ATE AT Gm
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where 111, Tio € R™ ™ are constant matrices to

be determined. From (3), (4) and (5), state space
representation of the DEM is given by

i’m = AT(va Qm)'fm‘FBT(Qm)u"'BT(QM)wa (6)
where
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+ Crum (G — T3 Tr2dm),
with
Te, = [ dm A G dm dm -
The applied torques can be computed by
T = Ty + F(xe,,) + My + Craplp,  (7)

where @ is the control law to be provided by the
nonlinear Ho, controller.

In fact, parametric uncertainties are also
present in the known nominal value of the term
F(z., ). The actual value is then written as
F.(ze, ) = F(x., ) + AF(z.,, ). In this case, (7)

can be rewritten as

T = Ty 0+ F (2e,, )+ AF (2e,, )+ Munps+ Crnp s
(8)

In this approach, the term
E(xe) = AF(2e,,) + Mmbds + CrmbGp,

includes the parametric uncertainties and the free-
floating base dynamics. It is considered unknown
and it is estimated by a T-S fuzzy model. It is
important to note that within this strategy, mea-
sured values for velocity and acceleration of the
free-floating base are not necessary.

3 Fuzzy Adaptive Robust Controller
Design

The nonlinear H., control procedure proposed in
this paper is developed based on the combina-
tion of two approaches: one based on the nominal
model and other based on fuzzy system via the
Takagi-Sugeno methodology.

3.1 Takagi-Sugeno Fuzzy Model

In general, a fuzzy system consists of four parts:
the fuzzifier, the fuzzy rule base, fuzzy inference
engine and the defuzzifier. The fuzzifier is a map-
ping from the input universe of discourse U C R”
to the fuzzy sets defined on U. There exist two
factors which determine a fuzzification interface:
(i) the number of fuzzy sets defined on the in-
put universe of discourse and (ii) the membership
functions related to these fuzzy sets. The fuzzy
rule base is a set of linguistic statements in the
form of

IF premises are satisfied,
THEN consequences are inferred.

The fuzzy inference engine is the decision making
logic which employs fuzzy rules from the fuzzy rule
base to determine the corresponding output to the
fuzzified inputs.

The T-S fuzzy model is caracterized by a fuzzy
rule base with functional consequences instead of
fuzzy consequences, as

IF U1 8 A11 and (5 5 A12 ...and Uy 1S Alr;
THEN Y1 = )\10 + )\1111,1 + )\12’&2 + ...+ /\1TU7~.

IF uq is A1 and us is Ags ... and u, is Ag,,
THEN y;, = Ago + Ap1u1 + Aioto + - .o+ Agr .

where A5, j =1,...,rand ¢ = 1,...,k, are lin-
guistic variables refered to fuzzy sets defined on
the input spaces Uy, Us, ..., Uq; uy, usg, ..., Uy,



are input variables values and k is the number of
fuzzy rules.

The inferred output from the T-S method is
crisp (hence, it does not need a defuzzifier) and
it is defined by the weighed average of outputs y;
from each linear subsystem implied

k
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where p; is the freedom degree of i-th rule, defined
as the minimum among the grade of membership
associated to the entries in the activated fuzzy sets
by the i-th rule

Hi = A,;l(ul) N AiQ(UQ) VANPAN Air(uT). (10)

Thus, considering Z,, = [Gm Gm|” the fuzzy
inputs and A(Z,,) := [A1(Gm) A2(Gm)] composed
of fuzzy sets defined for the fuzzified inputs, a
fuzzy system for functional estimation of the term
E(z.) based on T-S method is defined as
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3.2 Nonlinear Hoo Control

Given a desired disturbance attenuation level ~,
the problem of the mixed model based/fuzzy
adaptive robust H., control proposed in this pa-
per, has a solution if there exist a state feedback
dynamic controller

A =

Tm

a(t, Tm), (12)
T (t, Ay Tn), (13)

such that the following performance index is
achieved, for any initial condition

T
/ (27 Q& + u" Ra) dt < &7, (0) Py (0)
0

T
FAT(0)ZoR(0) + 42 / (wTw)dt, (14)
0
where Q = QT > 0,R = RT~> 0,P =Pl >
0, and Zg = Z& > 0, while A = A — A* is the
estimation error from the fuzzy system, where *
denotes the optimum of A.

Considering the nonlinear H., control via
game theory, (Chen et al., 1994), let

i=—-R'BTTyz (15)

be the optimal control input, with B = [I | 0]7
and Ty being the solution of the following alge-
braic equation

-1
0 K T —1 1 T
[K O}—TOB(R _,),2[) B Th+Q =0,
(16)
such that K > 0, R < I and
T — T T | _ RTQ1 RTQ-
0 0 I 0 I :

considering R; the result of the Cholesky factor-

ization
1 —1
RIR, = (R—l — 21)
Y

and the positive definite symmetric matrix @ fac-
torized as

Q:[QlTQ1 Q12 }
L QIQ2 |’

The matrices Q and R are defined by the de-
signer thus the restrictions are preserved.
Hence, the control law
A = —Z7T="T, BT Toi, (17)
T a+ F(we,, ) + ZA, (18)

Tm =

is the solution for the problem of the mixed model
based /fuzzy adaptive robust H,, control.

Remark 3.1 With the solution given by the
adaptive control law (17), that depends on the
state tracking error T.,, the fuzzy system estimates
the parametric uncertainties and the non-modeled
dynamics (which includes the base dynamic of the
space Tobot).

4 Results

For wvalidation purpose, the mixed model
based/fuzzy adaptive robust controller with
Hso performance is applied to a free-floating
space planar manipulator with two links, whose



nominal parameters are given in Table 1. The
corresponding DEM is a fixed-base, three-link,
planar manipulator whose first joint is configured
as passive, ¢n = [g2 ¢3]7 are the joints to
be controlled. Its structure is based on the
experimental fixed-base manipulator UArmlII
(Underactuated Arm II), designed and built by
H. Ben Brown, Jr. of Pittsburgh, PA, USA,
whose nominal parameters are given in Table 2.
The nominal matrices M(q) and C(g,¢) for the

DEM can be found in (Liang et al.,

Table 1: SM f’arameters
!

1996).
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Figure 2: Fuzzy sets A1 (Gy,) and Az (Gm).

The fuzzy rule base is given by

Ry : TIF(upis A11) and (ug is A1) THEN vy,
Ry : IF(upis Ayp) and (ug is Ass) THEN yo
Rs : TIF(up is A11) and (ug is Age) THEN y3
Ry : IF(upis Ag1) and (ug is A12) THEN yy
Rs : IF(upis Agp) and (ug is Agg) THEN y5
Rs : IF(uyis Agp) and (ug is Aze) THEN yg
Ry : IF(up is As1) and (ug is A12) THEN y7
Rg : IF(uyis Asy) and (ug is Azz) THEN ys
Ry IF (up is Ag1) and (ug is Asz) THEN yq

(kg) | (kgm?) | (m) | (m)
Base | 4.816 | 0.008251 | 0.253 0
Link 2 | 0.618 0.0075 0.118 | 0.12
Link 3 | 0.566 0.006 0.126 | 0.085

Table 2. DEM Parameters

Body m; I; W le;

(hg) | (hgm?) | (m) | (m)
Link 1 | 1.932 | 0.008251 | 0.203 0
Link 2 | 0.850 0.0075 0.203 | 0.096
Link 3 | 0.625 0.006 0.203 | 0.077

A trajectory tracking task is defined for the
space manipulator joints, characterized by initial
conditions ¢, (0) = [20° — 40°] and final con-
ditions ¢ (ty) = [80° — 10°], with ¢t; = 3s.
The reference trajectory, g2, is a fifth degree poly-
nomial. During the simulation, a limited distur-
bance, initializing in ¢ = 1s, was introduced in the
following form

0.035¢~2
0.015¢2

sin(27t)

Td = sin(27t)

Parametric uncertainties are also included in the
DEM model as a multiplicative error of 0.7. A set
of fuzzy systems is defined as

where El() and EQ() correspond to the estimate
of the uncertain part of dynamic behavior of joints
2 and 3, respectively. The fuzzy sets A(Z,,) are
defined to the universe of discourse of position er-
rors, u; = ¢m € U, and to the universe of dis-
course of velocity errors, us = Gm € Uy, as shown
in Figure 2.

The H,o controller is characterized by a de-
sired attenuation level v = 2. The selected weight-
ing matrices are (1 = 0.122515, Q2 = 915, Q12 =
0 and R = 0.5I,. The adaptive control law to
adjust y; is implemented based on (17).

Figure 3 presents the result for joint trajec-
tory tracking of the space manipulator, includ-
ing the free-floating base movement and the po-
sition errors during the task procedure. Figure 4
presents the behavior of the joints velocities and
the velocities tracking errors. Figure 5 presents
the applied torques behavior. The simulation re-
sults have shown an interesting performance of
the fuzzy based adaptive nonlinear H., controller.
One can observe that in presence of disturbances
the position and velocity errors remain small.
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Figure 4: Joints velocities and velocity errors.
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Figure 5: Applied torques.

5 Conclusion

In this paper, the problem of tracking control with
a guaranteed Ho, performance is solved for free-
floating space manipulator systems with plant un-
certainties, non-modeled dynamics and external
disturbances. The new control strategy proposed
considers a mixed model based/fuzzy adaptive ap-
proach. To complement the mathematical model,
a fuzzy system based on Takagi-Sugeno method
was applied to estimate the dynamic behavior of
the free-floating base and the parametric uncer-
tainties. Note that fuzzy approach does not de-
mand any position, velocity or acceleration value
from the free-floating base, which is a very inter-
esting result since values as the spacecraft veloc-
ity or acceleration are not easy to obtain. The
simulated results show the robustness of this new
approach.
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